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Abstract 

Options have become extremely popular and the reasons behind that can be summarized in two 

points; they are attractive tools both for speculation and hedging.  If their price can be determined: 

therefore their trading can be done with a certain confidence.The vendor of the option have two 

mains questions. How much should the buyer of the option pay in other words, how to access the 

price at the time t = 0 and the richness available at time T ?becomes the pricing problem. Multi 

fractals offer a well-defined set of answers to this question because it has the capability of 

generating various degree of long term memory in different powers of return. A model cannot 

capture all aspects of reality but rather a simple version that focuses on some particular point of 

interest. We present a dynamic multi-period spectrum model of variation of the capital market 

price aimed at determining the growth rate of an asset, using a continuous rate of return,𝑟𝑡 =
−𝑒−𝛾𝛼; and the optimal trading strategy. 

Key Words: Dynamic Multi-period, Spectrum Model, Capital Market, Trading Strategy and Asset 

Return 

 

INTRODUCTION 

Let (ℝ𝑛, 𝛽(ℝ𝑛)) ; be a measurable space and let 𝑓: 𝛽(ℝ𝑛) → ℝ be a measurable function. Then 

the multi-fractal spectrum is defined by 

  𝐷(𝛼) = {𝜀𝜖𝛽(ℝ𝑛): 𝑓(̅𝛼)} ≤ ∆𝛼; 𝜀 = 𝛼                              (1.1) 

The basic problem is to calculate the function 𝐷(𝛼)(𝑆𝑢𝑛 𝑒𝑡𝑎𝑙 2001).To do this, we need to know 

what the function 𝑓(̅𝛼) is. The multi-fractal formalism of multi-affine functions amounts to 

compute the  spectrum,𝐷(𝛼), define a  set where the fractal exponent is equal to 𝛼. ( Xiao 2004) 

 Following  

equations                                𝐷ℎ(𝑢, 𝑥) = lim
𝑟→0

𝑠𝑢𝑝
𝜇(𝐵̅(𝑥,𝑟))

ℎ(𝑟)
 and 

https://doi.org/10.56201/ijssmr.v8.no1.2022.pg32.40
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lim
𝑡→0

sup
𝑋𝑡
𝑑

ℎ(𝑡)
≤
(1+𝛾)2

2𝜃
=
(1+

1

𝑓̅𝛼(0,1)∆𝛼
)

2

2𝜃
.      to obtain the function 𝑓(𝛼) = lim

𝑟→0
𝑠𝑢𝑝

𝑇(𝑟)

ℎ(𝑟)
  in our case, 

we require the local asymptotic behavior of the sample path of the process. And what comes to 

mind is the subject of the law of iterated logarithm (LIL).To this end, we assume a double 

stochastic integrals by a direct adaptation of the case of the Brownian motion and set  (Uzoma 

2006) 

                     ℎ(𝑡) = 2𝑡 log 𝑙𝑜𝑔
1

𝑡
,  for  𝑡 > 0.     (1.2) 

 In what follows, we now state; 

Lemma 1.1  

For 𝑡 > 0and ℎ(𝑡) = 2𝑡 log 𝑙𝑜𝑔
1

𝑡
, the singularity spectrum 𝐷(𝛼) defined as the Hausdorff 

dimension of the set where the fractal exponent is equal to 𝛼 (Xiong 2002) is given by 

                                            lim
𝑡→0

𝑠𝑢𝑝
𝑋𝑡
𝑑

ℎ(𝑡)
=
(1+𝛾)2

2𝜃
, 𝜃 = 1, 𝛾𝜖[0,1],                              (1.3a) 

where𝛾 =
1

𝑓̅𝛼(0,1)∆𝛼
.                                                                (1.3b) 

Proof  

Let 𝑑 be a predictable process valued in a bounded interval [𝛼0, 𝛼1]  for some real parameters, 0 ≤

𝛼0 ≤ 𝛼1, and𝑋𝑡
𝑑 ≔ ∫ ∫ 𝑎𝑟𝑑𝑊𝑟𝑑𝑊𝑢

𝑢

0

𝑡

0
. 

 

Then             𝛼0 ≤ 𝑙𝑖𝑚𝑡→0
2𝑋𝑡

𝑑

ℎ(𝑡)
≤ 𝛼1 𝑎. 𝑠. 

Now set        𝛼̅ =
(𝛼0+𝛼1)

2
≥ 0 

and 

𝛿 ≔
(𝛼1+𝛼0)

2
. 

For the first inequality, we have by the law of the iterated logarithm for the Brownian motion. 

𝛼̅ = lim
𝑡→0

𝑠𝑢𝑝
2𝑋𝑡

𝑑

ℎ(𝑡)
≤ 𝛿 lim

𝑡→0
𝑠𝑢𝑝

2𝑋𝑡
𝑑

ℎ(𝑡)
+ lim
𝑡→0

𝑠𝑢𝑝
2𝑋𝑡

𝑑

ℎ(𝑡)
  , 

Where𝑑̌ = 𝛿−1(𝛼̅ − 𝑑)   is the value in[−1,1]. It then follows from the second inequality that; 

http://www.scholarpedia.org/article/Attractor_Dimensions
http://www.scholarpedia.org/article/Attractor_Dimensions
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lim
𝑡→0

𝑠𝑢𝑝
2𝑋𝑡

𝑑

ℎ(𝑡)
≥ 𝛼̅ − 𝛿 = 𝛽0. 

For the proof of the second inequality, we assume without loss of generality that ‖𝑑‖∞ ≤ 1. 

Let 𝑇 > 0 and 𝜆 > 0 be such that2𝜆𝑇 < 1. Then from Doob’s maximal inequality for sub-

martingales for all 𝛽 ≥ 0, we have 

𝑃 [max
0≤𝑡≤𝑇

2𝑋𝑡
𝑑 ≥ 𝛽] = 𝑃 [max

𝑜≤𝑡≤𝑇
𝑒𝑥𝑝 (2𝜆𝑋𝑡

𝑑) ≥ 𝑒𝑥𝑝(𝜆𝛽)]  

≤ 𝑒−𝜆𝛽𝐸 [𝑒2𝜆𝑋𝑇
𝑑
] 

     = 𝑒−𝜆(𝛽+𝑇)(1 − 2𝜆𝑇)−
1
2⁄ .                                          (1.4) 

       

Take 𝜃, 𝛾𝜖(0,1) and set all 𝐾𝜖𝑁 

   𝛽𝑘 = (1 + 𝛾)
2ℎ(𝜃𝑘) 

and 

𝜆𝑘 = [2𝜃
𝑘(1 + 𝛾)]−1. 

Applying 

𝜇(𝐵̅(0, 𝑟)) = |{𝐸𝜖ℝ𝑛: 𝑋𝑡
𝑑,𝑛𝜖𝐵̅(0, 𝑟)}| 

     = ∫ 𝐼𝐵̅(0,𝑟)
∞

0
𝑋𝑡
𝑑,𝑛𝑑𝑡 

     = 𝑇(𝑟). we have that for all 𝐾𝜖𝑁, 

𝑃 [ max
0≤𝑡≤𝜃𝑘

2𝑋𝑡
𝑑 ≥ (1 + 𝛾)2ℎ(𝜃𝑘) ≤ 𝑒−

1
2⁄ (1+𝑟)(1 + 𝑟−1)(−𝑘 𝑙𝑜𝑔 𝜃)−(1+𝛾)]. 

It follows from the Borel-Cantelli lemma that for almost all 𝑤𝜖Ω and since   

     ∑
1

𝐾(1+𝛾)𝑘>0  , 

there exists a natural number 𝐾𝜃,𝛾(𝑤) such that for all 𝑘 ≥ 𝐾𝜃,𝛾(𝑤), 

   max
0≤𝑡≤𝜃𝑘

2𝑋𝑡
𝑑(𝑤) < (1 + 𝛾)2ℎ(𝜃𝑘). 

In particular, for all 𝑡 ∈ (𝜃𝑘+1, 𝜃𝑘), 

2𝑋𝑡
𝑑(𝑤) < (1 + 𝛾)2ℎ(𝜃𝑘) ≤ (1 + 𝛾)2

ℎ(𝑡)

𝜃
. 
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Hence 

  lim
𝑡→0

sup
𝑋𝑡
𝑑

ℎ(𝑡)
≤
(1+𝛾)2

2𝜃
=
(1+

1

𝑓̅𝛼(0,1)∆𝛼
)

2

2𝜃
.                                      (1.5) 

1.2 The general case 

In the real world in general, markets are neither ideal nor complete (Val and Zaka 2004). Therefore, 

the equation  

∆=
𝜕𝑉

𝜕𝑆
± 𝐻(1.6a) 

can be seen as real world behavior of a stock market price.  

Consider hedging a market comprising h unit of asset in long position and one unit of the option 

in short position. At time T the market value is assumed to be ℎ − 𝑃(𝐸) ± 𝐻 or ℎ𝑃 −𝑊 ±𝐻, 
following (1.6a). 

After an elapse, ∆𝑡, the value of the market will change by an amount/rate ℎ(∆𝑃 + 𝐷1∆𝑡) − ∆𝑊,in 

view of the dividend received on h unit held, where 𝐷1 is the market price of risk, following 

                                                     𝑀𝐷(𝑓𝛼̅) = lim
𝜀→0

∑ 𝑟𝑘
𝐷

𝑘 ; 𝐷 > 0 ; 𝑟𝑘 < 𝜀. By Ito’s lemma we have 

ℎ(𝓊𝑃∆𝑡 + 𝜎𝑃∆𝑧 + 𝐷1∆𝑡) = [(
𝜕𝑊

𝜕𝑡
+
𝜕𝑊

𝜕𝑃
𝓊𝑃 +

1

2

𝜕2𝑊

𝜕𝑃2
𝜎2𝑃2)∆𝑡 +

𝜕𝑊

𝜕𝑃
𝜎𝑃∆𝑧] ± 𝐻 

or 

[ℎ𝓊𝑃 + ℎ𝐷1 − (
𝜕𝑊

𝜕𝑡
+
𝜕𝑊

𝜕𝑃
𝓊𝑃 +

1

2

𝜕2𝑊

𝜕𝑃2
𝜎2𝑃2)] ∆𝑡 = [ℎ𝜎𝑃 −

𝜕𝑊

𝜕𝑃
𝜎𝑃] ∆𝑧𝐻.                                 (1.6b) 

 Take ℎ =
𝜕𝑊

𝜕𝑃
  , then the uncertainty term disappears and the market in this case is temporarily 

riskless (no signal). It should therefore grow in value by the riskless rate in force i.e.   

(ℎ𝓊𝑃 + ℎ𝐷1 − [
𝜕𝑊

𝜕𝑡
+
𝜕𝑊

𝜕𝑃
𝓊𝑃 +

1

2

𝜕2𝑊

𝜕𝑃2
𝜎2𝑃2]) ∆𝑡 ± 𝐻 

                                                  =      (ℎ𝑃 −𝑊)𝛾∆𝑡 ±  𝐻                              (1.7) 

 

Thus,  

                                                    𝐷1
𝜕𝑊

𝜕𝑃
− (

𝜕𝑊

𝜕𝑡
+
1

2

𝜕2𝑊

𝜕𝑃2
𝜎2𝑃2) = (

𝜕𝑊

𝜕𝑃
𝑃 −𝑊)𝛾,                           (1.8) 
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so that              

𝜕𝑊

𝜕𝑡
+ (𝛾𝑃 − 𝐷1)

𝜕𝑊

𝜕𝑃
+
1

2

𝜕2𝑊

𝜕𝑃2
𝜎2𝑃2 = 𝛾𝑊 .                                     (1.9) 

Under the following dynamics 

   𝑑𝑃𝑡 = 𝛼(𝑡)𝑃𝑡𝑑𝑡 + 𝜎(𝑆𝑡)𝑃𝑡𝑑𝑊(𝑡), 

where 𝛼(𝑡) = ln (
𝑃𝑡+∆𝑡−𝑃𝑡

∆𝑡
) is the rate of stock price changes at time 𝑡. 

we have the version of the parabolic partial differential equation (4.9) with 𝐷1 = 0 as; 

−
𝜕𝑊(𝑃, 𝑡)

𝜕𝑡
= 𝑟𝑃

𝜕𝑊(𝑃, 𝑡)

𝜕𝑃
+
1

2
𝜎2(𝑆𝑡)𝑃

2
𝜕2𝑊(𝑃, 𝑡)

𝜕𝑃2
± 𝐻 

                                               −𝑟𝑊(𝑃, 𝑡) ± 𝐻, ∀(𝑃, 𝑡) ∈ (0,∞) × (0, 𝑇),                                  (1.10a) 

Following equation  

                                                   𝑦𝑤(𝜏) − 𝑦0(𝜏)  =
𝜕𝑉

𝜕𝑆
± (𝐻𝑜 + 𝐻𝑤) ±

𝐻𝑜 .                                                       𝑦𝑤(𝜏) − 𝑦0(𝜏)  =
𝜕𝑉

𝜕𝑆
± (2𝐻𝑜)we have; 

−
𝜕𝑊(𝑃,𝑡)

𝜕𝑡
= 𝑟𝑃

𝜕𝑊(𝑃,𝑡)

𝜕𝑃
+
1

2
(

𝜎𝑚
2

(1+𝑓( 𝛿(𝑡,𝑇)𝜆2 𝑆2𝛤/𝑓̅∆𝛼 ))
) (𝑆𝑡)𝑃

2 𝜕
2𝑊(𝑃,𝑡)

𝜕𝑃2
± (𝐻𝑜 + 𝐻𝑤) ± 𝐻𝑜                                                       

(1.10b) 

and 

=  𝑟𝑃
𝜕𝑊(𝑃,𝑡)

𝜕𝑃
+
1

2
(

𝜎𝑚
2

(1+𝑓( 𝛿(𝑡,𝑇)𝜆2 𝑆2𝛤/𝑓̅∆𝛼 ))
) (𝑆𝑡)𝑃

2 𝜕
2𝑊(𝑃,𝑡)

𝜕𝑃2
± 2𝐻𝑜                   (1.10c) 

1.3     The optimal trading strategy 

Let us denote an optimal trading strategy 𝜋𝑡
∗ for which we define  

                                                     𝐻𝜋𝑡∗(𝑡, 𝛾, 𝑃) = 𝐸𝜋𝑡∗[𝑈(𝑊(𝑇))].                                         (1.11) 

Our objective here is to find the optimal value function such that 

                                                𝐻(𝑡, 𝛾, , 𝑃) = Sup
𝜋𝑡
∗∈ 𝜋

𝐻𝜋𝑡∗(𝑡, 𝛾, , 𝑃).                                      (1.12)    

Assume equation (4.9) for 𝐷1 ≠ 0 together with the optimal 𝜋𝑡
∗, we have 

𝜕𝑊

𝜕𝑡
+ (𝛾𝑃 − 𝐷1)

𝜕𝑊

𝜕𝑃
+
1

2

𝜕2𝑊

𝜕𝑃2
𝜎2(𝑆𝑡)𝜋𝑡

∗𝑃2 = 𝛾𝑊.                               (1.13) 
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Put 𝑧 =
𝛼

𝑃
;     𝑊(𝑃) = 𝑧𝛽𝐻(𝑍). Since 𝑊is  dependent on 𝛾, differentiating and substituting into 

equation (1.13), gives 

  𝛾𝑧𝛽𝐻 =
𝜎2(𝑆𝑡)

2
[𝛽(𝛽 + 1)𝑧𝛽𝐻 + 𝛽𝑧𝛽+1

𝜕𝐻

𝜕𝑧
+ 2(𝛽 + 1)𝑧𝛽+1

𝜕𝐻

𝜕𝑧
+ 𝑧𝛽+2𝜋𝑡

∗ 𝜕
2𝐻

𝜕𝑧2
] + (

𝛾𝛼

𝑧
−

 𝐷1) (−
1

𝛼
) (𝛽𝑧𝛽+1𝐻 + 𝑧𝛽+2

𝜕𝐻

𝜕𝑧
).                                                                    (1.14)                                                                                 

Now cancelling by 𝑧𝛽 and collecting like terms give 

0 =
𝜎2(𝑆𝑡)𝜋𝑡

∗

2
𝑧2
𝜕2𝐻

𝜕𝑧2
+
𝜕𝐻

𝜕𝑧
𝑧 (𝜎2(𝛽 + 1) − 𝛾 −

𝐷1
𝛼
𝑧) 

                                                +𝐻 (
𝜎2

2
𝛽(𝛽 + 1) − 𝛾, (𝛽 + 1) + 𝛽

𝐷1

𝛼
𝑧).                                     (1.15)  

  Set  
𝜎2(𝑆𝑡)

2
𝛽 = 𝑟 and let  

𝐷1
𝛼⁄

𝜎2(𝑆𝑡)

2

= −1 to have  

𝛽 =
2𝑟

𝜎2(𝑆𝑡)
, 𝛼 = −

2𝐷1

𝜎2(𝑆𝑡)
 . SubstitSuteintoequation (4.14) to obtain 

  𝑧𝜋𝑡
∗𝐻𝑧𝑧 + (2 − 𝑧)𝐻𝑧 = 𝛽(𝐻 − 𝐻𝑧).                                    (1.16) 

Solving for optimal trading strategy, we have 

𝜋𝑡
∗ =

𝛽(𝐻 − 𝐻𝑧)

𝑧𝐻𝑧𝑧
+
(𝑧 − 2)𝐻𝑧
𝑧𝐻𝑧𝑧

 

=  

2𝑟

𝜎2(𝑆𝑡)
(𝐻 − 𝐻𝑧)

𝑧𝐻𝑧𝑧
+
(𝑧 − 2)𝐻𝑧
𝑧𝐻𝑧𝑧

 

                                                             =       

2
𝜎2(𝑆𝑡)
2

𝛽

𝜎2(𝑆𝑡)
(𝐻−𝐻𝑧)

𝑧𝐻𝑧𝑧
+
(𝑧−2)𝐻𝑧

𝑧𝐻𝑧𝑧
.                                           (1.17) 

=          

2

(

  
 
(

𝜎𝑚
2

(1+𝑓( 𝛿(𝑡,𝑇)𝜆2 𝑆2𝛤/𝑓̅∆𝛼 ))
)(𝑆𝑡)

2

)

  
 
𝛽

𝜎2(𝑆𝑡)
(𝐻 − 𝐻𝑧)

𝑧𝐻𝑧𝑧
+
(𝑧 − 2)𝐻𝑧
𝑧𝐻𝑧𝑧

 

 

 

The model has some successes in explaining excess volatility of stock returns compared to 

fundamentals and negative Skewness of equity returns as well as generating multi-fractal 

spectrum. By equation (4.6) there is no market signal as it tends to zero, meaning that the market 

is likely to crash at such point, signifying insolvency in asset returns.      

                                                                         𝑓(𝛼) = lim
𝑘→∞

(
ln𝑁(𝛼)

ln 𝑠𝑘
).                            (1.18) 
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Denoting by 𝑁(𝛼, ∆𝑡) the number of intervals [𝑡, 𝑡 + ∆𝑡] required to cover 𝜏(𝛼) we can write 

equation (1.27b)~   𝑆𝑡 = 𝑆(𝑡, 𝑇, 𝑟) = 𝐾𝑒
−𝑟(𝑇−𝑡) 

 

   𝑁(𝛼, ∆𝑡)~(∆𝑡)−𝑓(𝛼).                                                           (4.19) 

The market prices correspond to the values of 𝛼 between 𝛼𝑚𝑖𝑛 and 𝛼(𝑓𝑚𝑎𝑥) 
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